Categories: Health

Deadly brain tumors halted by blocking telomere protein

Glioblastoma brain tumors are notoriously difficult to treat, and the prognosis is poor for people with this type of brain cancer. However, a new study may have discovered a way to halt glioblastoma growth and increase patient survival.

By inhibiting a protein called telomeric repeat binding factor 1 (TRF1), researchers were able to stop the growth and division of murine and human glioblastomas.
ADVERTISEMENT
CIC Info for Pharmacists – Savings & Support Info Here
Learn More About Reimbursement and How to Help Educate Your Patients.
www.cic-hcp.com/physician_site

Senior study author Maria A. Blasco, head of the Telomeres and Telomerase Group at the Spanish National Cancer Research Centre (CNIO) in Madrid, Spain, and colleagues recently reported their findings in the journal Cancer Cell.

According to the American Brain Tumor Association, glioblastoma accounts for around 15.4 percent of all primary brain tumors in the United States.

Fast-growing and difficult to treat, glioblastoma is one of the deadliest brain tumors. It is estimated that for people with aggressive glioblastoma who are treated with a combination of temozolomide — a chemotherapy drug — and radiation therapy, the median survival is just 14.6 months.
Blocking TRF1 reduced glioblastoma growth

Glioblastomas develop from star-shaped brain cells called astrocytes. These tumors also contain a subset of cells called glioblastoma stem cells (GSCs), which enable the tumors to regenerate. This is one reason why glioblastoma is so difficult to treat.

The researchers note that stem cells contain high levels of the TRF1 protein. TRF1 is a component of shelterin, which is a protein complex that helps to safeguard telomeres — that is, the protective caps at the end of chromosomes.

Additionally, TRF1 plays a significant role in the tumor-regenerating abilities of GSCs. With this in mind, Blasco and her colleagues sought to determine how blocking TRF1 might influence glioblastoma growth.
The researchers removed TRF1 during the formation of glioblastoma tumors in mouse models. This reduced glioblastoma growth in the rodents and increased their survival by 80 percent.

When the team blocked TRF1 in glioblastomas that had already formed in the mice, the rodents’ survival rose by 30 percent.

On further investigation, the researchers found that blocking the TRF1 protein in glioblastoma tumors caused damage to the DNA of telomeres in GSCs, which prevented these cells from proliferating.




  • Eve

    Recent Posts

    Heart Attack Causes and its Solution

    What is the Main Cause of a Heart Attack? What is its Solution? A heart attack is the blockage of… Read More

    1 year ago

    Understanding the Debt Ceiling: Its Impact, Importance, and Implications

    In the vast economic arena, one term that often takes center stage, inciting extensive debates and discussions, is the "debt… Read More

    2 years ago

    De-Dollarization: The New World Order of Currency and Its Global Impact

    De-Dollarization: The Changing Face of Global Finance The financial landscape is in a state of flux, with an intriguing economic… Read More

    2 years ago

    Unstoppable Bayern Munich: The Story Behind Their 11th Consecutive Bundesliga Title

    The curtains closed on a dramatic Bundesliga season with Bayern Munich standing tall once again, clinching their 11th straight title.… Read More

    2 years ago

    Celine Dion Cancels Concert Tour Due to Deteriorating Stiff-Person Syndrome

    The Unfolding Story of Celine Dion's Health In recent news that has left fans across the globe stunned, iconic singer… Read More

    2 years ago

    Navigating the Crossroads: LeBron James, Anthony Davis, and the LA Lakers’ Uncertain Future

    As the echoes of the recent NBA season start to fade, the attention of enthusiasts is firmly glued to one… Read More

    2 years ago