Available Balance
Things you never know about animals !!!
May 24, 2017
1

The Ecdysozoa are protostomes, named after the common trait of growth by moulting or ecdysis.[97] The largest animal phylum belongs here, the Arthropoda, including insects, spiders, crabs, and their kin. All these organisms have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water.[98] A number are important parasites.[99] Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.
Lophotrochozoa
The Lophotrochozoa, evolved within Protostomia, include two of the most successful animal phyla, the Mollusca and Annelida.[100][101] The former, which is the second-largest animal phylum by number of described species, includes animals such as snails, clams, and squids, and the latter comprises the segmented worms, such as earthworms and leeches. These two groups have long been considered close relatives because of the common presence of trochophore larvae, but the annelids were considered closer to the arthropods because they are both segmented.[102] Now, this is generally considered convergent evolution, owing to many morphological and genetic differences between the two phyla.[103] Lophotrochozoa also includes the Nemertea or ribbon worms, the Sipuncula, and several phyla that have a ring of ciliated tentacles around the mouth, called a lophophore.[104] These were traditionally grouped together as the lophophorates.[105] but it now appears that the lophophorate group may be paraphyletic,[106] with some closer to the nemerteans and some to the molluscs and annelids.[107][108] They include the Brachiopoda or lamp shells, which are prominent in the fossil record, the Entoprocta, the Phoronida, and possibly the Bryozoa or moss animals.[109]

The Platyzoa include the phylum Platyhelminthes, the flatworms.[110] These were originally considered some of the most primitive Bilateria, but it now appears they developed from more complex ancestors.[111] A number of parasites are included in this group, such as the flukes and tapeworms.[110] Flatworms are acoelomates, lacking a body cavity, as are their closest relatives, the microscopic Gastrotricha.[112] The other platyzoan phyla are mostly microscopic and pseudocoelomate. The most prominent are the Rotifera or rotifers, which are common in aqueous environments. They also include the Acanthocephala or spiny-headed worms, the Gnathostomulida, Micrognathozoa, and possibly the Cycliophora.[113] These groups share the presence of complex jaws, from which they are called the Gnathifera.

A relationship between the Brachiopoda and Nemertea has been suggested by molecular data.[114] A second study has also suggested this relationship.[115] This latter study also suggested that Annelida and Mollusca may be sister clades. Another study has suggested that Annelida and Mollusca are sister clades.[116] This clade has been termed the Neotrochozoa.
Animals can be divided into two broad groups: vertebrates (animals with a backbone) and invertebrates (animals without a backbone). Half of all described vertebrate species are fishes and three-quarters of all described invertebrate species are insects. The following table lists the number of described extant species for each major animal subgroup as estimated for the IUCN Red List of Threatened Species, 2014.3
Over 95% of the described animal species in the world are invertebrates.
Because of the great diversity found in animals, it is more economical for scientists to study a small number of chosen species so that connections can be drawn from their work and conclusions extrapolated about how animals function in general. Because they are easy to keep and breed, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have long been the most intensively studied metazoan model organisms, and were among the first life-forms to be genetically sequenced. This was facilitated by the severely reduced state of their genomes, but as many genes, introns, and linkages lost, these ecdysozoans can teach us little about the origins of animals in general. The extent of this type of evolution within the superphylum will be revealed by the crustacean, annelid, and molluscan genome projects currently in progress. Analysis of the starlet sea anemone genome has emphasized the importance of sponges, placozoans, and choanoflagellates, also being sequenced, in explaining the arrival of 1500 ancestral genes unique to the Eumetazoa.[118]

An analysis of the homoscleromorph sponge Oscarella carmela also suggests that the last common ancestor of sponges and the eumetazoan animals was more complex than previously assumed.[119]

Other model organisms belonging to the animal kingdom include the house mouse (Mus musculus), laboratory rat (Rattus norvegicus) and zebrafish (Danio rerio).
Animal coloration is the general appearance of an animal resulting from the reflection or emission of light from its surfaces. Some animals are brightly coloured, while others are hard to see. In some species, such as the peacock, the male has strong patterns, conspicuous colours and is iridescent, while the female is far less visible.

There are several separate reasons why animals have evolved colours. Camouflage enables an animal to remain hidden from view. Animals use colour to advertise services such as cleaning to animals of other species; to signal their sexual status to other members of the same species; and in mimicry, taking advantage of the warning coloration of another species. Some animals use flashes of colour to divert attacks by startling predators. Zebras may possibly use motion dazzle, confusing a predator’s attack by moving a bold pattern rapidly. Some animals are coloured for physical protection, with pigments in the skin to protect against sunburn, while some frogs can lighten or darken their skin for temperature regulation. Finally, animals can be coloured incidentally. For example, blood is red because the haem pigment needed to carry oxygen is red. Animals coloured in these ways can have striking natural patterns.

Animals produce colour in different ways. Pigments are particles of coloured material. Chromatophores are cells containing pigment, which can change their size to make their colour more or less visible. Some animals, including many butterflies and birds, have microscopic structures in scales, bristles or feathers which give them brilliant iridescent colours. Other animals including squid and some deep-sea fish can produce light, sometimes of different colours. Animals often use two or more of these mechanisms together to produce the colours and effects they need.

Rate This Content




    1. plagiarized contents, what a shame this site tolerates you…

       

    Leave a reply

    Your email address will not be published.