Available Balance
computer network, or data network, is a digital telecommunications network

A computer network, or data network, is a digital telecommunications network which allows nodes to share resources. In computer networks, computing devices exchange data with each other using connections between nodes (data links.) These data links are established over cable media such as wires or optic cables, or wireless media such as WiFi.

Network computer devices that originate, route and terminate the data are called network nodes.[1] Nodes can include hosts such as personal computers, phones, servers as well as networking hardware. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other. In most cases, application-specific communications protocols are layered (i.e. carried as payload) over other more general communications protocols. This formidable collection of information technology requires skilled network management to keep it all running reliably.

Computer networks support an enormous number of applications and services such as access to the World Wide Web, digital video, digital audio, shared use of application and storage servers, printers, and fax machines, and use of email and instant messaging applications as well as many others. Computer networks differ in the transmission medium used to carry their signals, communications protocols to organize network traffic, the network’s size, topology, traffic control mechanism and organizational intent. The best-known computer network is the Internet.

History Edit

See also: History of the Internet
The chronology of significant computer-network developments includes:

In the late 1950s, early networks of computers included the U.S. military radar system Semi-Automatic Ground Environment (SAGE).
In 1959, Anatolii Ivanovich Kitov proposed to the Central Committee of the Communist Party of the Soviet Union a detailed plan for the re-organisation of the control of the Soviet armed forces and of the Soviet economy on the basis of a network of computing centres, the OGAS.[2]
In 1960, the commercial airline reservation system semi-automatic business research environment (SABRE) went online with two connected mainframes.
In 1963, J. C. R. Licklider sent a memorandum to office colleagues discussing the concept of the “Intergalactic Computer Network”, a computer network intended to allow general communications among computer users.
In 1964, researchers at Dartmouth College developed the Dartmouth Time Sharing System for distributed users of large computer systems. The same year, at Massachusetts Institute of Technology, a research group supported by General Electric and Bell Labs used a computer to route and manage telephone connections.
Throughout the 1960s, Paul Baran, and Donald Davies independently developed the concept of packet switching to transfer information between computers over a network. Davies pioneered the implementation of the concept with the NPL network, a local area network at the National Physical Laboratory (United Kingdom) using a line speed of 768 kbit/s.[3][4][5]
In 1965, Western Electric introduced the first widely used telephone switch that implemented true computer control.
In 1966, Thomas Marill and Lawrence G. Roberts published a paper on an experimental wide area network (WAN) for computer time sharing.[6]
In 1969, the first four nodes of the ARPANET were connected using 50 kbit/s circuits between the University of California at Los Angeles, the Stanford Research Institute, the University of California at Santa Barbara, and the University of Utah.[7] Leonard Kleinrock carried out theoretical work to model the performance of packet-switched networks, which underpinned the development of the ARPANET.[8][9] His theoretical work on hierarchical routing in the late 1970s with student Farouk Kamoun remains critical to the operation of the Internet today.
In 1972, commercial services using X.25 were deployed, and later used.

Rate This Content




  • Leave a reply

    Your email address will not be published.